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AbrtncL We investigate the time wolution of a prototypical population biology reaction 
which involves reproduction, self-regulation and mmpetitive annihilation of WO distinct 
species. In one dimension, we use a quasistatic analysis U, argue lhat for a sptem with 
equal initial densities of fwo slrongly competing species, an alternating pattern of domains 
forms whose lengths grow logarithmically with lime. A scaling analysis of the underlying 
master equation, as well as numerical integralion of the reaclion-diffusian equations 
support this mult. For unequal initial densities, the mncentration of the minority 
species undergoes a p e r - l a w  decay with a non-univeml exponent. We generalize the 
model by allowing for a nonlinear self-regulation term in the rate equations. A 8 
function of the exponent of this nonlinearity, the typical domain size may grow either 
as a p e r  law with time or Saturate at a finite value. Our general approach also 
suggesu that a marsening domain mosaic O C N ~  in arbitrary spatial dimensions. In two 
dimensions, numerical integration of the resetion-diffusion equations indicates that the 
average domain area grows approximately as 

1. Intduction 

Spatial heterogeneities play an important role in determining the temporal behaviour 
of the diffusion-controlled two-species annihilation process A + B - inert [1-4]. For 
equal initial densities of the WO species, a random distribution of reactants evolves 
into a continuously-coarsening mosaic of A-rich and B-rich domains whose linear 
dimension grows with time as t1I2, when the spatial dimension d js less than 4. This 
segregation implies that reaction takes place only on domain boundaries, leading to 
the density decaying with time as t - d / 4 ,  compared to the mean-field prediction of 
1-'. There js also a non-trivial spatial variation of the density across a domain, a 
feature which implies the existence of new characteristic length scales to fully describe 
the spatial organization of reactan6 [5]. 

These results motivate our investigation into the effects of spatial heterogeneities 
on the temporal evolution and the spatial organization in a generic reaction process 
which may have relevance for competitive population biology dynamics (61. The model 
we investigate involves two species which separately undergo logistic growth (i.e. 
reproduction and self-regulation), and which annihilate whenever opposite species 
meet [7]. This system has been previously investigated by Burlatsky and Pronin 
[8] and we have independently re-derived some of their results. According to the 
rate equations, if the annihilation relatively weak the system eventually reaches a 
spatially homogeneous co-existing state [7]. On the other hand, if the annihilation 
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is sufficiently strong, only one of the two species survives, as long as the initial 
density difference is not exactly equal to zero. This extinction lends credence to the 
general principle that only the stronger of the species survives when there is strong 
"petition for limited resources. 

Our primary result is that an initially homogeneous distribution of reactants in 
one dimension evolves into a mosaic of single-species domains which coarsens at a 
logarithmic rate, in the limit of strong "petition and for a diffusion-limited reaction. 
This mnclusion is based on a quasistatic analysis to determine the density profile of a 
large domain. When a mosaic of domains forms, competition takes place only on the 
domain boundaries, leading to an extinction time for the smaller domain which is an 
exponential function of its length. Additionally, we find that the time development 
of the domains can be tuned between power-law growth and asymptotic saturation 
by varying the functional form of the self-regulation term in the rate equations. In 
two dimensions also, the quasistatic analysis suggests that a homogeneous system 
evolves into a mosaic of domains, but with the average domain size growing as a 
p e r  law with time. This prediction is corroborated by numerical integration of the 
reaction-diffusion equations. 

In section 2, we define the model and recall some basic results that emerge from 
the rate equations. We then analyse the one-dimensional reaction-diffision equation 
in the steady-state, from which we can infer basic facts about the time evolution of 
large single-species domains. A generalized model, with a variable nonlinearity in 
the self-regulation term, is also introduced, and the behaviour of the average domain 
size is investigated. We then analyse the master equation for the evolution of the 
complete domain-size distribution in section 3. A scaling approach to the master 
equation supports our general conclusions based on the analysis of a single domain. 
The master equation approach is also extended to the case of unequal initial densities 
of the two species. In section 4, we outline some of the basic features of the reaction 
in higher spatial dimensions. Numerical results, which are based on the integration of 
the reaction-diffision equations, are presented in section 5. We end with conclusions 
and some open questions in section 6. 

2, The two-species mmpetition model 

Consider two reactive species, A and B which evolve bath by reproduction and 
bimolecular self-regulation, as well as through bimolecular annihilation of opposite 
species whenever they meet. If the reactants move by diffusion, then the time evolu- 
tion of the system may be described by the reaction-diffision equations 

= V * A ( r , t )  + A ( r , t ) ( l  - A ( r , t )  - k B ( r , 1 ) )  at 

at a B ( r ' t )  = V * E ( r , t )  + E ( r , t ) ( l  - E ( r , 1 )  - k A ( r , t ) ) .  

Here A ( r , t )  and B ( r , t )  denote the densities of each species at position r at time 
1, the time and unit of length have been rescaled so that the diffusion mefficient and 
the growth rate of each species is unity. The constant k measures the strength Of 
competition between the two species. 

In the mean-field limit, the reactant densities are spatially homogeneous, so that 
all dependences on T can be ignored. This implies that the diffusion terms are absent. 
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The resulting coupled rate equations have 4 fixed points a t  ( A , B )  = (O,O), (1 ,0) ,  
(0,l). and (1,l). There are two distinct behaviours depending on whether k is less 
than or greater than unity. In the former case, the stable fixed point is at ( 1 , l ) .  The 
competition is sufficiently weak that it only serves to renormalize the quadratic self- 
regulation term for each species, yielding two-species coexistence. In the opposite 
case, the fixed point (1,l) is unstable with respect to ( 1 , O )  and ( 0 , l ) .  Fa any 
initial condition, except for exactly equal initial densities, the system quickly flows to 
one of the two stable h e d  points, corresponding to  sulvival of a single species. 

Since we are primarily interested in the case of strong competition in one dimen- 
sion, we will employ an approximate analysis for the reaction-diffusion equations, 
equation (I), which is suited to treat a heterogeneous system. We assume that the 
competition is sufficiently strong that there is no co-existence of As and Bs in the rate 
equation approximation. Thus we are led to examine the properties of a single-species 
(A) domain of length ZL, in a quasistatic approximation, in which the enclosing B 
domains act as absorbing boundaries at z = *L.  This density profile is governed by 

A"(z) = - A ( z ) ( l  - A ( z ) )  (2) 

with A ( f L )  = 0, and where the prime denotes differentiation with respect to 2. 'lb 
find the solution to equation (2), we first multiply by A'(z), and integrate from - L  
(the left edge of the domain) to an  arbitrary point I. This gives 

A"(2) - A"(-L)  = )A3(z)  - A'(.). 

A'*(-L) I 4; = A:ax - )A:,, 

(3) 

Evaluating this at 2 = 0 yields 

(4) 

which relates the slope at the edge of the domain, i.e. the flux 4,- of particles leaving 
the domain, to the  maximum value of the reactant concentration in the domain, 
A,,, = A(0) .  As L - 00, this flux approaches a limiting value +m = i /& 
Substituting equation (4) into equation (3) and integrating once again yields 

which implicitly relates the length of a domain to the maximum value of the concen- 
tration. While this relation can be written in terms of an elliptic function, it is more 
instructive to estimate the integral directly. Since the primary contribution to the in- 
tegrai arises when A is ciose to A,,,, we substitute A = A,,, - 6 and A,,, = 1 - E 

into the integrand to yield 

--t -In E .  
A,".. d 6  

J2A,,, e6 + 6 2  

For E -t 0 the domain has a nearly static core where the density is close to unity, 
and a interface region whose extent is of order unity where the slope is close to &. 
We call such domains 'fully developed'. On the other hand, for small values of A,,,, 
the nonlinear term in equation (2) is negligible. For this system, which is described by 
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the linearized reaction4iffusion equation, the density profile is closely approximated 
by a half-sinusoid. The growth in density is roughly proportional to the length of the 
domain, while the efflux h roughly a constant. Consequently, there is a minimum 
domain length of ?r below which all solutions yield a density which decays to zero. 

From equations (4) and (6), we now infer that the flux leaving one edge of a large 
domain of length L is 

1 
(7) bL E - -cons tan t  x e-2L.  

J;i 
Since the net flux between two large domains of lengths L, and L, is 4L, - dL2,  
this leads, in the quasistatic approximation, to a rate of change in the length of an 
Ldomain, surrounded by an &domain and an L,domain, which is 

(8) D: e-LI + - ze- = - X(L,,L,,L). 
d L  
dt 
- 

This result implies that a domain of the typical size or larger, which is surrounded by 
typical-size domains, grows as In t .  This extremely slow growth is a direct consequence 
of an exponentially small net flux across two large domains. 

The logarithmic dependence of the domain length on time suggests that the two- 
species competition model is, in some sense, marginal. This leads us to consider 
a generalized process with a tunable self-regulation term to control the time de- 
pendences of the average domain length. The reaction-diffusion equations for our 
generalized model are 

a A ( r ’ t )  = V 2 A ( r , t )  + A ( r , t ) ( l  - A(r,t))@sgn(l - A ( r , t ) )  - R ( r , t )  at  
(9) 
\- I 

a B ( r ’ t )  = V 2 B ( r , t )  + B ( r , t ) ( l  - B(r,t))Psgn(l - B ( r , t ) ) -  R ( r , t ) .  

Here the mutual reaction term R ( T , ~ )  can be arbitrary, as long as it it sufficiently 
strong to rule out the co-existence of As and Bs in stable equilibrium. For this 
generalized model, we again investigate the steady state of a single domain with 
absorbing boundary conditions, using the Same analysis as that employed in equations 
(3)-(7). We thereby find the following relation between the length of the domain and 
the maximum value of the density 

at  

AD,.. ( 1  - A)Btl - ( 1  - Amax)@+’ L = i  dA{  P + 1  

As in the case of equation (7), the primary contribution to the integral for P > 1 
comes from values of A close to A,,,. Thus, to find the asymptotic behaviour of 
the integral, we again substitute A = A,,, - 6, A,,, = 1 - c, and retain only the 
lowest order terms in these small parameters. By this approach we find, after some 
calculation 

4- - 4 L  - L--f (11) 
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with 7 = 2 ( P  + l ) / (p  - 1). ?he time evolution of a domain of length L,  with 
neighbours of lengths L,  and L,, is now governed by 

d L  
dt  
- D( L;’ + 1.2’ - 2L-7.  

For a relatively large domain surrounding by typical size domains, this immediately 
leads to L ( t )  - t1’(’+7). For p < 1, on the other hand, the integral in equation (10) 
converges as A,,, -+ 1 and the domain size is finite in this limir This, in turn, implies 
that the flux difference, 4- - +L, tends to zero at a finite value of L. Thus when 
neighbouring domains reach this limiting size, there is no additional flux of reactants 
acrms the interface and large domains ‘freeze’. We will consider only p > 1 in what 
follows. 

3. M a s t e r  equation and scaling analysis 

‘RI gain further insight into the spatial organization of reactants, we examine the 
master equation for sue distribution of the domains. Consider a system of total 
length C, with equal initial concentrations of the two species. We define n ( L , t )  to 
be the number density of domains of length L at time 1, Le. the number of domains 
in the system with length between L and L + dL is n( L, t )dL.  The total number 
of domains in the system is 

N ( t )  = n ( L , t ) d L .  7 
0 

Here we have assumed that C is much larger than the typical domain size so that the 
upper limit of integration can be extended to infinity. The corresponding probability 
density for domains of size L is p ( L , t )  = n ( L , t ) / N ( t ) .  Since the total length of 
the domains must be equal to the length of the system and independent of time, the 
following normalization condition must hold 

0 

Consider now the change in n ( L ,  t) as a function of time. There are two mech- 
anisms by which the number of domains of a given size can change. firstly, domains 
grow or shrink at a rate which depends on the sizes of their neighbours (equation (8) 
or (12)). Secondly, domains can disappear by shrinking to zero length, thus allowing 
their neighbours to coalesce and create a larger domain. The results of these two 
processes are described by the following master equation 
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where 

and where the subscript 0 stands for the argument L being Zero. The first (convection) 
term in equation (15) accounts for the change in n ( L , t )  due to the growth or 
shrinkage of a domain as its boundaries move. ?he second term accounts for the loss 
of a domain of length L due to its coalescence with a neighbour, as an intervening 
small domain shrinks to zero. The third term represents the gain in the density 
of Ldomains due to the (length conserving) coalescence of two smaller domains. 
The mean-field assumption is implicit in equation (U), as we have approximated 
the exact growth rate of a domain, which depends on its size and that of its two 
nearest-neighbours, by an average growth rate. This average is performed over the 
sue distribution of the two neighbours under the additional assumption that there 
are no spatial correlations between domains. In the same spirit, we also replace 
the three-domain distribution function by a product of three one-domain distribution 
functions. 

One can now in a straightfonvard manner derive the change in the total number 
of domains as a function of time by integrating equation (15) with respect to L. We 
find 

d N  - = -21Xolno. 
d t  

This result simply reflects the fact that the number of domains changes only when a 
domain shrinks to zero. The rate of Occurrence of such an event is IX,lno. For every 
domain collapse, two domains are lost, one by the collapse itself and another by the 
malescence of the two neighbouring domains. 

Let us now attempt a scaling solution of equation (15) by rescaling all lengths in 
terms of the typical domain length, s ( t ) .  This approach has proved to be a useful 
tool in a variety of aggregation phenomena [9]. We therefore make the scaling ansatz 

Here the normalization factor of ~ ( t ) - ~  ensures the invariance of the total length, 
equation (14). Under the assumption that nearly all domains are in the order of the 
typical size, the total number of domains is simply 

and the probability density of domain sizes is given by 

'Ib analyse the master equation, we need to write the growth rate X ( L , t )  in a 
scaling form. If we assume that the two enclosing neighbours of a given domain are 
of the typical size, then 

q s - 7  - L - ? )  
Z(e-8 - e - L )  

p > 1 
p = 1. 
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For p > 1, A ( L , t )  is already in a scaling form, while a scaling form cannot hold 
when p = 1. Nevertheless, to see where the scaling assumption will lead, we postulate 
the following scaling forms for A ( L , t )  

In addition to the approximations already made, it should be remembered that 
A( L ,  t) depends on the domain size distribution itself. Thus the above ansatz can 
only be regarded as a plausible guess for A( L ,  t ) .  

Substituting the scaling forms for A( L ,  1 )  into the master equation, the depen- 
dence on s ( t )  and u separates. We thus obtain for the time dependence of s ( t )  

and for the shape of the scaling function 
21 

d u  d ' 0 ' f o '4+  c m / 4 ( u l ) 4 ( u -  ul)dul  (24) 
0 

cz 2 4  + U'' = --(f4) - 2 -  

where fo denotes f(u = 0). Thus the probability distribution obeys scaling, subject to 
the aforementioned caveats about the form of A( L ,  1). The above two consequences 
of scaling are borne out by our numerical studies. 

Consider now the long-time behaviour of the system in the case when the initial 
concentrations of the two species are unequal. For simplicity and concreteness, we 
treat the case where the concentrations of the two species are very different (ce < 
cAj. infi implies war mosi uf the E domains are smaiier than the size of a iypicai 
A domain in the initial state. Consequently, almost all B domains will decrease in 
length as a function of time. From equation (21), it immediately follows that a B 
domain of initial length Lo will shrink to a length 

-.. .~ . ~ ~ ~ ~ ~ . . ~ ~  _.~-. 

in time 1. This decrease is independent of the typical length of the A domains, 
provided that they are initially larger than the B domains. Since there are two length 
scales in the problem, the average A- and Bdomain lengths, one-parameter scaling 
should no longer hold. This is confirmed numerically. 

'Ib determine the time dependence of the minority species concentration, we 
follow the time evolution of the length distribution of minority domains. Denoting 
this distribution at t = 0 by no( Lo), then at time t this distribution evolves to 

and the minority concentration at time t can be written as 

c B ( t ) 4 J m n ( L ( t ) , t ) L ( t ) d L ( f ) .  
0 
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'RI evaluate this integral, we shall assume a Poissonian initial distribution of minority 
species domain lengths, no(Lo)  = c B ( 0 ) C p 2 e x p ( - p l o ) ,  where p k related to p B ,  
the probability of occupation of a lattice site by a particle of the minority species, by 
p = -In(pB)/a = In(ac,)/a, with a the lattice constant. In a biological context a 
would be the smallest territory required by a single member of the species. Using the 
steepest descent method, we estimate the time dependence of the minority species 
concentration to be 

C B ( t )  - { t - p  p = 1  

exp -(constant x p t ' l y+ l )  p > 1. 

The behaviour is non-universal, since the exponent depends on the initial concen- 
tration of the minority species. This feature was predicted earlier by Burlatslty and 
Pronin for p = 1 [8]. However, the detailed nature of our respective results are 
somewhat different, due to the assumption that p zz cB for small cB in [8]. A more 
complete understanding of the time dependence of the minority species concentration 
would be useful in understanding the time scale of the extinction of minority species 
in biological problems. 

4. Higher dimensions 

'RI describe the behaviour of biological organisms, it is necessary to consider the 
reaction in at least a two-dimensional space. For organisms not strictly confined to 
the surface of the earth, e.g. birds and fish, it may be sufficient to consider motion 
in two space dimensions, since the range in the third dimension is much smaller 
than in the plane. In contrast to the one-dimensional case, each domain possesses 
only a single neighbour, Le. a domain is completely surrounded by its neighbour. If 
there are more than two competing species, then domain topologies akin to a map 
colouring problem can occur. 

As in one dimension, we attempt to gain some insight about the dynamics of 
competing domains by considering first the simpler problem of a single species in a 
spherical box of radius R with absorbing boundary conditions. The equation for the 
(spherically symmetric) density profile in d dimensions becomes 

A"(?-) + u A ' ( r )  r + A ( r ) ( l -  A ( r ) )  = 0 (29) 

with the boundary condition A( R) = 0. Unfortunately, the first derivative term 
prevents a solution in quadratures by the analysis of section 2 However, by qualitative 
arguments and by numerical integration of equation (29), the following basic features 
are found. First, the domain radius R and the maximum value of A, A,,, = 1 - e, 
continue to be related by R - -In e .  However, the dependence of the flux on 
the domain radius is different than that in one dimension. 'RI see this, multiply 
equation (29) by A'(?-) and integrate from 0 to R, to yield 

R 
dr  

A'(R)'+ 2 ( d  - 1) 1 -A'(.)' r = A i a x  - $Ai , ,  
0 
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Although we cannot explicitly compute the second term, we can estimate it by ob- 
serving that the slope is very small for most of the interval, 0 < r < R, but becomes 
appreciable (of order unity) near the domain edge. Therefore, the integral must have 
the following behaviour in the limit of large R 

Since R - In E, where E = 1 - A,,,, we therefore deduce that 

A‘( 00) - (32) 
constant 

R A‘( R )  = 

where A’(co) = l /& 
Thus the two-dimensional system behaves in a manner similar to our generalized 

one-dimensional model, but with y = 1 (equation (Il)), corresponding to an unphys- 

(23) leads to the prediction that the average domain size grows as s ( t )  a yuation t .  The 
ical negative value of the one-dimensional p. Nevertheless, using y = 1 in 

area of the domain should therefore grow linearly with time. The feature of a power- 
law behaviour for the efflux of a spherical domain is the mechanism which leads 
to power-law domain growth. Modifying the exponent of the self-regulation term 
will not affect the growth rate of domains in dimensions higher than 1, since the 
1 / R  term in equation (32) will always dominate the l/RY; y > 1 coming from the 
modified self-regulation term (equation (12)). 

5. Numerical results 

?b test our predictions, we performed a straightfonvard numerical integration of the 
reaction-diffusion equations (equation (1)). R r  a typical simulation in one dimension, 
we discretized the system into a periodic ring of 16384 grid points with the distance 
between successive points, 61 = 0.2 and the time step 6t = 0.016, close to, but 
slightly less than, the stability limit of the integration scheme [lo]. Initially, each 
lattice site is assigned the value A = 0.3 with probability p,, or B = 0.3 with 
probability p B  = 1 - pa. Qualitatively similar behaviour was found for other types 
of random initial conditions. Our results are based on averaging 500-1000 different 
initial conditions. In the long-time limit, this system evolves into an alternating array 
of large domains, with the domain shape very close to that predicted by our quasistatic 
approach (see figure 1). 

Figure 2 shows the increase in the average domain size as a function of time 
for the case p = 1 and for equal initial densities of the WO species. There is an 
initial transient of fast domain growth that lasts until approximately 10 time units. We 
attribute this feature to the rapid smoothing out of the initial density discontinuities. 
At later times, however, the average domain length appears to grow logarithmically 
with time. Figure 3 shows corresponding results for the average domain size for the 
case p = 3, where the average domain length now appears to grow as a power law 
with time. The data does exhibit some downward cutvature, when plotted on a double 
logarithmic scale, but the last few datum points are nearly linear with a limiting slope 
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1 .o 
0.5 

0 

I I 
Figure 1. Ihe dependence of the densities A( z) and 
B ( z )  on position z for a onedimensional periodic 
system of length C = 200 at t LL 16, t OL 56. and 
t c* 193 (top to battam). 

0 50 100 150 200 
X 

30 

20 I 
10' lo2 1 o3 I o4 

t 
Figure 2 ?he time dependcna of the average 
domain length in one dimension for the case p = 1.  

I 

10' 102 1 o3 1 o4 
t 

Figure 3. Ihe time dependence of the average 
domain length in one dimension for the case P = 3. 
Ihe dashed line of slope 115 ir meant as a guide 
to lhe eye. 

that is approximately equal to 0.22. This compares favourably with our theoretical 
prediction of 115, from equation (23). 

?b test scaling for the domain length distribution, we plot the probability of finding 
a domain length L, multiplied by s ( t ) ,  i.e. p ( L , t ) s ( t ) ,  versus L / s ( t ) ,  on a semi- 
logarithmic scale (figure 4). The domain length distribution for equal initial densities 
at three different representative times collapses onto a single universal curve. The 



Dynamics and spatial organization in hvo-species competition 5899 

behaviour of this scaling distribution at large lengths appears to be a pure exponential 
decay. Figure 5 shows the decay of the minority species for the case of unequal initial 
densities. This decay is evidently a power law, but with the exponent dependent on the 
initial density. The dependence of the exponent on the initial mndition is, however, 
relatively weak however. Thus the numerical data is not sufficient to provide an 
unambiguous test of our theoretical prediction, equation (B), which is most aWUrate 
when c B ( 0 )  < ~~(0). Additionally, an astronomically large system k required to 
ensure that the Bs have not all quickly disappeared when c,(O) < c a ( 0 ) .  

In two dimensions, the structure of the domains is qualitatively similar to that 
encountered in spincdal decomposition [Ill (figure 6). The reaction process gives 

o t=64 l - 
4 
a- - a 
4 

m 
v 

1 o - ~  

o t=64 l 

2 4 6 8 

m u m  4 The scaled domain size distribution in one dimension for equal inilial densities. 
Here a ( t )  i., lhe rypical domain size at lime t for p = 1. Dais fort  = 64 (o), t = 5 1 2  
(0) and t = 2048 (0) are displayed. 

0.001 A 
1 oo 102 1 o4 

[ 

Figure 5. Time dependence of lhe Ule average mncenlralion of the minority species for 
a medimensional v r e m  with p = 1. Show arc dala far cg = 0.38 (o), c g  = 0.40 
(U), and e g  = 0 . 4 2  (v). ?he lines are the leapt-squares At to the dau for t 2 10, 
w h m  lespcctivc slopes are 0.25, 0.18 and 0.13, up 10 Zdigit accuracy. 
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rise to an effective surface tension which attempts to smooth out domain boundaries, 
as is observed in the numerical integration. Over the relatively short temporal range 
for which we. were able to obtain data, the average domain area appears to grow as a 
p e r  law with time, with the corresponding exponent equal to 0.84 (figure 7). If the 
domains are relatively compact, this would correspond to an average domain radius 
which grows approximately as t0.42, compared to our heuristic estimate of t1 I2.  

1 = 8  I = 12 

r = m  1 = w  

Figure 6 
densities at t i m a  f = 8 ,  12, M, and M. 

Snapshot of the densilia for a lwodimensional system with equal initial 

6. Conclusions 

In this paper we have addressed the dynamics of mmpetitive two-species logistic 
growth, focusing on the spatially inhomogeneous patterns that develop. Our principal 
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theoretical tool in investigating the evolution of domains is the quasistatic approxi- 
mation, where we assume that the flux of population leaving a growing domain of 
length L is the Same as the flux from a static domain enclosed in a box of length L 
with absorbing boundary conditions. In order for this approximation to be valid the 
domains must be fully developed and slowly growing. Here, a fully developed domain 
is characterized by a 'dead' interior region where the concentration is essentially unity 
and a boundary region which is much smaller than the interior. As the dimension 
of space increases, the radius at which a domain becomes fully developed increases. 
Thus, the crossover time, defined as the t h e  it takes for most of the domains to be- 
mme fully developed, increases as the spatial dimension increases. Our results hold 
only after the crossover time. Furthermore, the domains must be slowly growing, in 
the sense that the boundary must move much more slowly than a Fisher wave 1121. 

I 
1 10 100 1000 

t 
Figure 7. TTte lime dependma: of the average domain area in lwo dimensions. me lasl 
five dala pinls are well-fit by a wraighr line of slope 0.84. 

With these caveats in mind, our theoretical analysis predicts that, for equal initial 
densities of the two species, the average domain size grows logarithmically with time in 
one dimension, whereas in any higher dimension it grows as 4. If the self-regulation 
of each species has a nonlinear form, the growth rate of a domain becomes a power 
law in one dimension, while the two-dimensional result is unchanged. It is encouraging 
that as the domains get larger, they grow more slowly, thus self-consistently satisfying 
the criterion of slow growth, implicit in the quasistatic approximation. Numerical 
computations seem to bear out our predictions to a large extent, despite the fact 
that we have ignored correlations between neighbouring domains and variations in 
domain shape. In particular, in two dimensions, the shape of the typical domain is 
not even close to circular, as can be seen in figure 6 For unequal initial densities, 
the situation is more complex, and in one dimension, the minority species becomes 
extinct in a non-universal way which depends on the initial conditions. 

One can also ask whether this model has an upper critical dimension beyond which 
the concentrations behave according to the mean field, uniform density predictions. TJ 
appreciate the relevant issues, consider first two-species annihilation (A+ B - inert) 
[ M I ,  for which there is an upper critical dimension of d,  = 4. In this model, 
diffusion tends to smooth out initial density fluctuations and this competes with the 
annihilation of reactants at domain boundaries. In large spatial dimension, however, 
there is an increasing tendency for particles of one species to substantially penetrate 
domains of the opposite species as time increases. This mechanism homogenizes the 
densities and leads to mean field behaviour. In the two-species competition model, 
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the logistic growth of each species in isolation leads to fully developed domains of 
relatively high density. Consequently, there is negligible penetration of one species 
into an opposite species domain. These considerations suggest that the two-species 
competition model will not have an upper critical dimension. 
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